相關(guān)習題
 0  105647  105655  105661  105665  105671  105673  105677  105683  105685  105691  105697  105701  105703  105707  105713  105715  105721  105725  105727  105731  105733  105737  105739  105741  105742  105743  105745  105746  105747  105749  105751  105755  105757  105761  105763  105767  105773  105775  105781  105785  105787  105791  105797  105803  105805  105811  105815  105817  105823  105827  105833  105841  266669 

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,是甲、乙兩班同學身高(單位:cm)數(shù)據(jù)的莖葉圖,則甲班同學身高的中位數(shù)為    ;若從乙班身高不低于170cm的同學中隨機抽取兩名,則身高為173cm的同學被抽中的概率為   

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑R=   

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知拋物線y2=2px(p>0)與雙曲線有相同的焦點為F,A是兩條曲線的一個交點,且AF⊥x軸,則雙曲線的離心率是   

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

在某條件下的汽車測試中,駕駛員在一次加滿油后的連續(xù)行駛過程中從汽車儀表盤得到如下信息:
時間油耗(升/100公里)可繼續(xù)行駛距離(公里)
10:009.5300
11:009.6220
注:油耗=,可繼續(xù)行駛距離=,
平均油耗=
從上述信息可以推斷在10:00-11:00這1小時內(nèi)     (填上所有正確判斷的序號).
①向前行駛的里程為80公里;
②向前行駛的里程不足80公里;
③平均油耗超過9.6升/100公里;
④平均油耗恰為9.6升/100公里;
⑤平均車速超過80公里/小時.

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

在△ABC中,a、b、c為角A、B、C所對的三邊,已知b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若,,求c的長.

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,四棱錐P-ABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F(xiàn),H分別是線段PA,PD,AB的中點.
(Ⅰ)求證:PB∥平面EFH;
(Ⅱ)求證:PD⊥平面AHF;
(Ⅲ)求二面角H-EF-A的大小.

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

為了參加廣州亞運會,從四支較強的排球隊中選出18人組成女子排球國家隊,隊員來源人數(shù)如下表:
隊別北京上海天津八一
人數(shù)4635
(Ⅰ)從這18名隊員中隨機選出兩名,求兩人來自于同一支球隊的概率;
(Ⅱ)中國女排奮力拼搏,戰(zhàn)勝韓國隊獲得冠軍.若要求選出兩位隊員代表發(fā)言,設(shè)其中來自北京隊的人數(shù)為ξ,求隨機變量ξ的分布列,并求ξ的均值(數(shù)學期望).

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2+ax+blnx(x>0,實數(shù)a,b為常數(shù)).
(Ⅰ)若a=1,b=-1,求f(x)在x=1處的切線方程;
(Ⅱ)若a=-2-b,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知點是離心率為的橢圓C:上的一點.斜率為的直線BD交橢圓C于B、D兩點,且A、B、D三點不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△ABD的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
(Ⅲ)求證:直線AB、AD的斜率之和為定值.

查看答案和解析>>

科目: 來源:2011年北京市懷柔區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:
(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

同步練習冊答案