0  430526  430534  430540  430544  430550  430552  430556  430562  430564  430570  430576  430580  430582  430586  430592  430594  430600  430604  430606  430610  430612  430616  430618  430620  430621  430622  430624  430625  430626  430628  430630  430634  430636  430640  430642  430646  430652  430654  430660  430664  430666  430670  430676  430682  430684  430690  430694  430696  430702  430706  430712  430720  447090 

3.了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道雙曲線的有關(guān)性質(zhì)。

試題詳情

2.經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標(biāo)準(zhǔn)方程、幾何圖形及簡單性質(zhì);

試題詳情

1.了解圓錐曲線的實(shí)際背景,感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用;

試題詳情

3.突出重點(diǎn)

綜合考查在知識與方法的交匯點(diǎn)處設(shè)計(jì)命題,在不等式問題中蘊(yùn)含著豐富的函數(shù)思想,不等式又為研究函數(shù)提供了重要的工具,不等式與函數(shù)既是知識的結(jié)合點(diǎn),又是數(shù)學(xué)知識與數(shù)學(xué)方法的交匯點(diǎn),因而在歷年高考題中始終是重中之重。在全面考查函數(shù)與不等式基礎(chǔ)知識的同時(shí),將不等式的重點(diǎn)知識以及其他知識有機(jī)結(jié)合,進(jìn)行綜合考查,強(qiáng)調(diào)知識的綜合和知識的內(nèi)在聯(lián)系,加大數(shù)學(xué)思想方法的考查力度,是高考對不等式考查的又一新特點(diǎn)。

試題詳情

2.強(qiáng)化不等式的應(yīng)用

突出不等式的知識在解決實(shí)際問題中的應(yīng)用價(jià)值,借助不等式來考查學(xué)生的應(yīng)用意識。

高考中除單獨(dú)考查不等式的試題外,常在一些函數(shù)、數(shù)列、立體幾何、解析幾何和實(shí)際應(yīng)用問題的試題中涉及不等式的知識,加強(qiáng)不等式應(yīng)用能力,是提高解綜合題能力的關(guān)鍵.因此,在復(fù)習(xí)時(shí)應(yīng)加強(qiáng)這方面訓(xùn)練,提高應(yīng)用意識,總結(jié)不等式的應(yīng)用規(guī)律,才能提高解決問題的能力。

如在實(shí)際問題應(yīng)用中,主要有構(gòu)造不等式求解或構(gòu)造函數(shù)求函數(shù)的最值等方法,求最值時(shí)要注意等號成立的條件,避免不必要的錯誤。

試題詳情

1.在復(fù)習(xí)不等式的解法時(shí),加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練與復(fù)習(xí)

解不等式的過程是一個(gè)等價(jià)轉(zhuǎn)化的過程,通過等價(jià)轉(zhuǎn)化可簡化不等式(組),以快速、準(zhǔn)確求解。

加強(qiáng)分類討論思想的復(fù)習(xí).在解不等式或證不等式的過程中,如含參數(shù)等問題,一般要對參數(shù)進(jìn)行分類討論.復(fù)習(xí)時(shí),學(xué)生要學(xué)會分析引起分類討論的原因,合理的分類,做到不重不漏。

加強(qiáng)函數(shù)與方程思想在不等式中的應(yīng)用訓(xùn)練。不等式、函數(shù)、方程三者密不可分,相互聯(lián)系、互相轉(zhuǎn)化.如求參數(shù)的取值范圍問題,函數(shù)與方程思想是解決這類問題的重要方法.在不等式的證明中,加強(qiáng)化歸思想的復(fù)習(xí),證不等式的過程是一個(gè)把已知條件向要證結(jié)論的一個(gè)轉(zhuǎn)化過程,既可考查學(xué)生的基礎(chǔ)知識,又可考查學(xué)生分析問題和解決問題的能力,正因?yàn)樽C不等式是高考考查學(xué)生代數(shù)推理能力的重要素材,復(fù)習(xí)時(shí)應(yīng)引起我們的足夠重視。

試題詳情

8.線性規(guī)劃

(1)平面區(qū)域

一般地,二元一次不等式在平面直角坐標(biāo)系中表示某一側(cè)所有點(diǎn)組成的平面區(qū)域。我們把直線畫成虛線以表示區(qū)域不包括邊界直線。當(dāng)我們在坐標(biāo)系中畫不等式所表示的平面區(qū)域時(shí),此區(qū)域應(yīng)包括邊界直線,則把直線畫成實(shí)線。

說明:由于直線同側(cè)的所有點(diǎn)的坐標(biāo)代入,得到實(shí)數(shù)符號都相同,所以只需在直線某一側(cè)取一個(gè)特殊點(diǎn),從的正負(fù)即可判斷表示直線哪一側(cè)的平面區(qū)域。特別地,當(dāng)時(shí),通常把原點(diǎn)作為此特殊點(diǎn)。

(2)有關(guān)概念

引例:設(shè),式中變量滿足條件,求的最大值和最小值。

由題意,變量所滿足的每個(gè)不等式都表示一個(gè)平面區(qū)域,不等式組則表示這些平面區(qū)域的公共區(qū)域。由圖知,原點(diǎn)不在公共區(qū)域內(nèi),當(dāng)時(shí),,即點(diǎn)在直線上,作一組平行于的直線,,可知:當(dāng)的右上方時(shí),直線上的點(diǎn)滿足,即,而且,直線往右平移時(shí),隨之增大。

由圖象可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),對應(yīng)的最大,

當(dāng)直線經(jīng)過點(diǎn)時(shí),對應(yīng)的最小,所以,。

在上述引例中,不等式組是一組對變量的約束條件,這組約束條件都是關(guān)于的一次不等式,所以又稱為線性約束條件。是要求最大值或最小值所涉及的變量的解析式,叫目標(biāo)函數(shù)。又由于的一次解析式,所以又叫線性目標(biāo)函數(shù)。

一般地,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題。滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域。在上述問題中,可行域就是陰影部分表示的三角形區(qū)域。其中可行解分別使目標(biāo)函數(shù)取得最大值和最小值,它們都叫做這個(gè)問題的最優(yōu)解。

試題詳情

7.對數(shù)不等式

  

   等,

  

(1)當(dāng)時(shí),;

(2)當(dāng)時(shí),。

試題詳情

6.指數(shù)不等式

  

  

;

試題詳情


同步練習(xí)冊答案