相關習題
 0  261634  261642  261648  261652  261658  261660  261664  261670  261672  261678  261684  261688  261690  261694  261700  261702  261708  261712  261714  261718  261720  261724  261726  261728  261729  261730  261732  261733  261734  261736  261738  261742  261744  261748  261750  261754  261760  261762  261768  261772  261774  261778  261784  261790  261792  261798  261802  261804  261810  261814  261820  261828  266669 

科目: 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當0≤x≤200時,求函數(shù)vx)的表達式;

2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調區(qū)間以及在區(qū)間上的最值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設函數(shù)

1時,求函數(shù)的極值點;

2時,證明:上恒成立

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點,橢圓的離心率為是橢圓的右焦點,直線的斜率為為坐標原點.

(1)求的方程;

(2)設過點的動直線相交于兩點,問:是否存在直線,使以為直徑的圓經(jīng)過原點,若存在,求出對應直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有年齡在2555歲的一群人身體上的某項數(shù)據(jù),其頻率分布直方圖如下.(注:每組包括左端點,不包括右端點)

1)請補全頻率分布直方圖;

2)估計年齡的平均數(shù);(精確到小數(shù)點后一位數(shù)字)

3)若5055歲的人數(shù)是50,現(xiàn)在想要從2535歲的人群中用分層抽樣的方法抽取30人,那么2530歲這一組人中應該抽取多少人?

查看答案和解析>>

科目: 來源: 題型:

【題目】某人在微信群中發(fā)了一個8拼手氣紅包,被甲、乙、丙三人搶完,若三人均領到整數(shù)元,且每人至少領到1元,則甲領到的錢數(shù)不少于其他任何人的概率為

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某高中三年級的甲、乙兩個同學同時參加某大學的自主招生,在申請的材料中提交了某學科10次的考試成績,記錄如下:

甲:78 86 95 97 88 82 76 89 92 95

乙:73 83 69 82 93 86 79 75 84 99

(1)根據(jù)兩組數(shù)據(jù),作出兩人成績的莖葉圖,并通過莖葉圖比較兩人本學科成績平均值的大小關系及方差的大小關系(不要求計算具體值,直接寫出結論即可)

(2)現(xiàn)將兩人的名次分為三個等級:

成績分數(shù)

等級

合格

良好

優(yōu)秀

根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績組合中隨機選取一組,求選中甲同學成績高于乙同學成績的組合的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)的定義域為,且對任意,,且當.

1)證明:是奇函數(shù);

2)證明:上是減函數(shù);

3)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐PABCD中,側面PAD為等邊三角形且垂直于底面ABCDABBCAD,∠BAD=∠ABC=90°.

(1)證明:直線BC∥平面PAD

(2)若△PCD的面積為2,求四棱錐PABCD的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).證明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

同步練習冊答案