科目: 來源: 題型:
【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)可知與具有線性相關(guān)關(guān)系,請建立關(guān)于的回歸方程(系數(shù)精確到);
(2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量, ,則每位員工每日獎勵100元; ,則每位員工每日獎勵150元; ,則每位員工每日獎勵200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計(jì)算某位員工當(dāng)月獎勵金額總數(shù)大約多少元.(當(dāng)月獎勵金額總數(shù)精確到百分位)
參考數(shù)據(jù): , ,其中, 分別為第個月的促銷費(fèi)用和產(chǎn)品銷量, .
參考公式:
(1)對于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為, .
(2)若隨機(jī)變量服從正態(tài)分布,則, .
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校、兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差
①班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
②班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
③班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
④班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
其中正確結(jié)論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的多面體中,平面,平面,,且,是的中點(diǎn).
(1)求證:;
(2)求平面與平面所成的二面角的正弦值;
(3)在棱上是否存在一點(diǎn),使得直線與平面所成的角是. 若存在,指出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.
(1)求a,b的值;
(2)求A∩B和A∪(UB).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)討論的奇偶性,并說明理由;
(2)若對任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上有最大值9,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實(shí)數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目: 來源: 題型:
【題目】下列敘述中正確的是( )
A. 若,則“”的充分條件是“”
B. 若,則“”的充要條件是“”
C. 命題“”的否定是“”
D. 是等比數(shù)列,則是為單調(diào)遞減數(shù)列的充分條件
查看答案和解析>>
科目: 來源: 題型:
【題目】李冶(1192-1279),真定欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人、晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注: 平方步為畝,圓周率按近似計(jì)算)
A.步、步B.步、步C.步、步D.步、步
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com