科目: 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求上述函數(shù)有零點(diǎn)的概率;
(2)若, 都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根,稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)求表達(dá)式;
(3)把函數(shù),的最大值記作、最小值記作,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某動(dòng)物園要為剛?cè)雸@的小動(dòng)物建造一間兩面靠墻的三角形露天活動(dòng)室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.
(1)若,求的周長(結(jié)果精確到0.01米);
(2)為了使小動(dòng)物能健康成長,要求所建的三角形露天活動(dòng)室面積,的面積盡可能大,當(dāng)為何值時(shí),該活動(dòng)室面積最大?并求出最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列四個(gè)命題:
(1)函數(shù)為奇函數(shù)的充要條件是;
(2)函數(shù)的反函數(shù)是;
(3)若函數(shù)的值域是,則或;
(4)若函數(shù)是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱.
其中所有正確命題的序號是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資160萬元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資30萬元,由前期市場調(diào)研可知:甲城市收益P與投入單位:萬元滿足,乙城市收益Q與投入單位:萬元滿足,設(shè)甲城市的投入為單位:萬元,兩個(gè)城市的總收益為單位:萬元.
(1)寫出兩個(gè)城市的總收益萬元關(guān)于甲城市的投入萬元的函數(shù)解析式,并求出當(dāng)甲城市投資72萬元時(shí)公司的總收益;
(2)試問如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·金華調(diào)研)如圖,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD.
(1)求證:平面ADE⊥平面BDE;
(2)求直線AD與平面DCE所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)且x,.
(1)判斷的奇偶性,并用定義證明;
(2)若不等式在上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)的值域?yàn)?/span>函數(shù)在上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com