0  426667  426675  426681  426685  426691  426693  426697  426703  426705  426711  426717  426721  426723  426727  426733  426735  426741  426745  426747  426751  426753  426757  426759  426761  426762  426763  426765  426766  426767  426769  426771  426775  426777  426781  426783  426787  426793  426795  426801  426805  426807  426811  426817  426823  426825  426831  426835  426837  426843  426847  426853  426861  447090 

2.系統(tǒng)歸納求函數(shù)定義域、值域、解析式、反函數(shù)的基本方法.在熟練有關(guān)技能的同時(shí),注意對(duì)換元、待定系數(shù)法等數(shù)學(xué)思想方法的運(yùn)用.

試題詳情

函數(shù)有二種定義,一是變量觀點(diǎn)下的定義,一是映射觀點(diǎn)下的定義.復(fù)習(xí)中不能僅滿足對(duì)這兩種定義的背誦,而應(yīng)在判斷是否構(gòu)成函數(shù)關(guān)系,兩個(gè)函數(shù)關(guān)系是否相同等問(wèn)題中得到深化,更應(yīng)在有關(guān)反函數(shù)問(wèn)題中正確運(yùn)用.具體要求是:

1.深化對(duì)函數(shù)概念的理解,明確函數(shù)三要素的作用,并能以此為指導(dǎo)正確理解函數(shù)與其反函數(shù)的關(guān)系.

試題詳情

例1.已知長(zhǎng)方體的全面積為11,其12條棱的長(zhǎng)度之和為24,則這個(gè)長(zhǎng)方體的一條對(duì)角線長(zhǎng)為(   ).

(A)    (B)    (C)5    (D)6

分析及解:設(shè)長(zhǎng)方體三條棱長(zhǎng)分別為x,y,z,則依條件得:

 2(xy+yz+zx)=11,4(x+y+z)=24.而欲求的對(duì)角線長(zhǎng)為,因此需將對(duì)稱式寫成基本對(duì)稱式x+y+zxy+yz+zx的組合形式,完成這種組合的常用手段是配方法.故=62-11=25

∴  ,應(yīng)選C.

例2.設(shè)F1F2為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足∠F1PF2=90°,則ΔF1PF2的面積是(   ).         

(A)1    (B)   (C)2    (D)

分析及解:欲求   (1),而由已知能得到什么呢?

由∠F1PF2=90°,得   (2),

又根據(jù)雙曲線的定義得|PF1|-|PF2|=4    (3),那么(2)、(3)兩式與要求的三角形面積有何聯(lián)系呢?我們發(fā)現(xiàn)將(3)式完全平方,即可找到三個(gè)式子之間的關(guān)系.即,

∴  ,∴  選(A).

注:配方法實(shí)現(xiàn)了“平方和”與“和的平方”的相互轉(zhuǎn)化.

例3.設(shè)雙曲線的中心是坐標(biāo)原點(diǎn),準(zhǔn)線平行于x軸,離心率為,已知點(diǎn)P(0,5)到該雙曲線上的點(diǎn)的最近距離是2,求雙曲線方程.

分析及解:由題意可設(shè)雙曲線方程為,∵,∴a=2b,因此所求雙曲線方程可寫成:  (1),故只需求出a可求解.

設(shè)雙曲線上點(diǎn)Q的坐標(biāo)為(x,y),則|PQ|=  (2),∵點(diǎn)Q(x,y)在雙曲線上,∴(x,y)滿足(1)式,代入(2)得|PQ|=  (3),此時(shí)|PQ|2表示為變量y的二次函數(shù),利用配方法求出其最小值即可求解.

由(3)式有(yay≤-a).

二次曲線的對(duì)稱軸為y=4,而函數(shù)的定義域yay≤-a,因此,需對(duì)a≤4與a>4分類討論.

(1)當(dāng)a≤4時(shí),如圖(1)可知函數(shù)在y=4處取得最小值,

∴令,得a2=4

∴所求雙曲線方程為.

(2)當(dāng)a>4時(shí),如圖(2)可知函數(shù)在y=a處取得最小值,

∴令,得a2=49,

∴所求雙曲線方程為.

注:此題是利用待定系數(shù)法求解雙曲線方程的,其中利用配方法求解二次函數(shù)的最值問(wèn)題,由于二次函數(shù)的定義域與參數(shù)a有關(guān),因此需對(duì)字母a的取值分類討論,從而得到兩個(gè)解,同學(xué)們?cè)诮獯饠?shù)習(xí)題時(shí)應(yīng)學(xué)會(huì)綜合運(yùn)用數(shù)學(xué)思想方法解題.

例4.設(shè)f(x)是一次函數(shù),且其在定義域內(nèi)是增函數(shù),又,試求f(x)的表達(dá)式.

分析及解:因?yàn)榇撕瘮?shù)的模式已知,故此題需用待定系數(shù)法求出函數(shù)表達(dá)式.

設(shè)一次函數(shù)y=f(x)=ax+b  (a>0),可知  ,

.

比較系數(shù)可知:  

解此方程組,得  ,b=2,∴所求f(x)=.

例5.如圖,已知在矩形ABCD中,C(4,4),點(diǎn)A在曲線(x>0,y>0)上移動(dòng),且AB,BC兩邊始終分別平行于x軸,y軸,求使矩形ABCD的面積為最小時(shí)點(diǎn)A的坐標(biāo).

分析及解:設(shè)A(x,y),如圖所示,則(4-x)(4-y)      (1)

此時(shí)S表示為變量x,y的函數(shù),如何將S表示為一個(gè)變量x(或y)的函數(shù)呢?有的同學(xué)想到由已知得x2+y2=9,如何利用此條件?是從等式中解出x(或y),再代入(1)式,因?yàn)楸磉_(dá)式有開(kāi)方,顯然此方法不好.

如果我們將(1)式繼續(xù)變形,會(huì)得到S=16-4(x+y)+xy        (2)

這時(shí)我們可聯(lián)想到x2+y2x+yxy間的關(guān)系,即(x+y)2=9+2xy.

因此,只需設(shè)t=x+y,則xy=,代入(2)式得   S=16-4t+(3)S表示為變量t的二次函數(shù),

∵0<x<3,0<y<3,∴3<t<,∴當(dāng)t=4時(shí),SABCD的最小值為.

此時(shí)

注:換元前后新舊變量的取值范圍是不同的,這樣才能防止出現(xiàn)不必要的錯(cuò)誤.

例6.設(shè)方程x2+2kx+4=0的兩實(shí)根為x1,x2,若≥3,求k的取值范圍.

解:∵≥3,

,代入整理得(k2-2)2≥5,又∵Δ=4k2-16≥0,

解得k∈(-)∪[,+].

例7.點(diǎn)P(x,y)在橢圓上移動(dòng)時(shí),求函數(shù)u=x2+2xy+4y2+x+2y的最大值.

解:∵點(diǎn)P(x,y)在橢圓上移動(dòng),  ∴可設(shè)   于是

      =

      =

   令,   ∵,∴|t|≤.

   于是u=,(|t|≤).

   當(dāng)t=,即時(shí),u有最大值.

   ∴θ=2kπ+(kZ)時(shí),.

例8.過(guò)坐標(biāo)原點(diǎn)的直線l與橢圓相交于A,B兩點(diǎn),若以AB為直徑的圓恰好通過(guò)橢圓的左焦點(diǎn)F,求直線l的傾斜角.

解:設(shè)A(x1,y1),B(x2,y2)

   直線l的方程為y=kx,將它代入橢圓方

程整理得  (*)

由韋達(dá)定理,(1),(2)

   又F(1,0)且AFBF,∴,   即  ,

   將,代入上式整理得  ,

   將(1)式,(2)式代入,解得  .   故直線l的傾斜角為.

注:本題設(shè)交點(diǎn)坐標(biāo)為參數(shù),“設(shè)而不求”,以這些參數(shù)為橋梁建立斜率為k的方程求解.

例9.設(shè)集合A={}

(1)若A中有且只有一個(gè)元素,求實(shí)數(shù)a的取值集合B;

(2)當(dāng)aB時(shí),不等式x2-5x-6<a(x-4)恒成立,求x的取值范圍.

解:(1)令t=2x,則t>0且方程化為t2-2t+a=0  (*),A中有且只有一個(gè)元素等價(jià)于方程(*)有且只有一個(gè)正根,再令f(t)=t2-2t+a,

則Δ=0  或a=1或a≤0,從而B=(-,0]∪{1}.

(2)當(dāng)a=1時(shí),<x<3+,

當(dāng)a≤0,令g(a)=a(x-4)-(x2-5x-6),則當(dāng)a≤0時(shí)不等式  恒成立,

即當(dāng)a≤0時(shí),g(a)>0恒成立,故  ≤4.

綜上討論,x的取值范圍是(,4).

試題詳情

配方法、待定系數(shù)法、換元法是幾種常用的數(shù)學(xué)基本方法.這些方法是數(shù)學(xué)思想的具體體現(xiàn),是解決問(wèn)題的手段,它不僅有明確的內(nèi)涵,而且具有可操作性,有實(shí)施的步驟和作法.

配方法是對(duì)數(shù)學(xué)式子進(jìn)行一種定向的變形技巧,由于這種配成“完全平方”的恒等變形,使問(wèn)題的結(jié)構(gòu)發(fā)生了轉(zhuǎn)化,從中可找到已知與未知之間的聯(lián)系,促成問(wèn)題的解決.

待定系數(shù)法的實(shí)質(zhì)是方程的思想,這個(gè)方法是將待定的未知數(shù)與已知數(shù)統(tǒng)一在方程關(guān)系中,從而通過(guò)解方程(或方程組)求得未知數(shù).

換元法是一種變量代換,它是用一種變數(shù)形式去取代另一種變數(shù)形式,從而使問(wèn)題得到簡(jiǎn)化,換元的實(shí)質(zhì)是轉(zhuǎn)化.

試題詳情

2.為了實(shí)施有效的化歸,既可以變更問(wèn)題的條件,也可以變更問(wèn)題的結(jié)論,既可以變換問(wèn)題的內(nèi)部結(jié)構(gòu),又可以變換問(wèn)題的外部形式,既可以從代數(shù)的角度去認(rèn)識(shí)問(wèn)題,又可以從幾何的角度去解決問(wèn)題。

試題詳情

1.熟練、扎實(shí)地掌握基礎(chǔ)知識(shí)、基本技能和基本方法是轉(zhuǎn)化的基礎(chǔ);豐富的聯(lián)想、機(jī)敏細(xì)微的觀察、比較、類比是實(shí)現(xiàn)轉(zhuǎn)化的橋梁;培養(yǎng)訓(xùn)練自己自覺(jué)的化歸與轉(zhuǎn)化意識(shí)需要對(duì)定理、公式、法則有本質(zhì)上的深刻理解和對(duì)典型習(xí)題的總結(jié)和提煉,要積極主動(dòng)有意識(shí)地去發(fā)現(xiàn)事物之間的本質(zhì)聯(lián)系!白セA(chǔ),重轉(zhuǎn)化”是學(xué)好中學(xué)數(shù)學(xué)的金鑰匙。

試題詳情

例1.某廠2001年生產(chǎn)利潤(rùn)逐月增加,且每月增加的利潤(rùn)相同,但由于廠方正在改造建設(shè),元月份投入資金建設(shè)恰好與元月的利潤(rùn)相等,隨著投入資金的逐月增加,且每月增加投入的百分率相同,到12月投入建設(shè)資金又恰好與12月的生產(chǎn)利潤(rùn)相同,問(wèn)全年總利潤(rùn)m與全年總投入N的大小關(guān)系是        (  )

A. m>N     B. m<N     C.m=N     D.無(wú)法確定

[分析]每月的利潤(rùn)組成一個(gè)等差數(shù)列{an},且公差d>0,每月的投資額組成一個(gè)等比數(shù)列{bn},且公比q>1。,且,比較的大小。

若直接求和,很難比較出其大小,但注意到等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d是關(guān)于n的一次函數(shù),其圖象是一條直線上的一些點(diǎn)列。等比數(shù)列的通項(xiàng)公式bn=a1qn-1是關(guān)于n的指數(shù)函數(shù),其圖象是指數(shù)函數(shù)上的一些點(diǎn)列。

在同一坐標(biāo)系中畫出圖象,直觀地可以看出aibi   則,即m>N。

[點(diǎn)評(píng)]把一個(gè)原本是求和的問(wèn)題,退化到各項(xiàng)的逐一比較大小,而一次函數(shù)、指數(shù)函數(shù)的圖象又是每個(gè)學(xué)生所熟悉的。在對(duì)問(wèn)題的化歸過(guò)程中進(jìn)一步挖掘了問(wèn)題的內(nèi)涵,通過(guò)對(duì)問(wèn)題的反思、再加工后,使問(wèn)題直觀、形象,使解答更清新。

 

 

例2.如果,三棱錐P-ABC中,已知PA⊥BC,PA=BC=l,PA,BC的公垂線ED=h.求證三棱錐P-ABC的體積

分析:如視P為頂點(diǎn),△ABC為底面,則無(wú)論是S△ABC以及高h(yuǎn)都不好求.如果觀察圖形,換個(gè)角度看問(wèn)題,創(chuàng)造條件去應(yīng)用三棱錐體積公式,則可走出困境.

解:如圖,連結(jié)EB,EC,由PA⊥BC,PA⊥ED,ED∩BC=E,可得PA⊥面ECD.這樣,截面ECD將原三棱錐切割成兩個(gè)分別以ECD為底面,以PE、AE為高的小三棱錐,而它們的底面積相等,高相加等于PE+AE=PA=l,所以

VP-ABC=VP-ECD+VA-ECD=S△ECD•AE+S△ECD•PE=S△ECD •PA=BC·ED·PA=   評(píng)注:輔助截面ECD的添設(shè)使問(wèn)題轉(zhuǎn)化為已知問(wèn)題迎刃而解.

例3.在的展開(kāi)式中x的系數(shù)為( ).

(A)160       (B)240        (C)360      (D)800

分析與解:本題要求展開(kāi)式中x的系數(shù),而我們只學(xué)習(xí)過(guò)多項(xiàng)式乘法法則及二項(xiàng)展開(kāi)式定理,因此,就要把對(duì)x系數(shù)的計(jì)算用上述兩種思路進(jìn)行轉(zhuǎn)化:

思路1:直接運(yùn)用多項(xiàng)式乘法法則和兩個(gè)基本原理求解,則展開(kāi)式是一個(gè)關(guān)于x的10次多項(xiàng)式, =(x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2),它的展開(kāi)式中的一次項(xiàng)只能從5個(gè)括號(hào)中的一個(gè)中選取一次項(xiàng)3x并在其余四個(gè)括號(hào)中均選 擇常數(shù)項(xiàng)2相乘得到,故為·(3x)··24=5×3×16x=240x,所以應(yīng)選(B).

思路2 利用二項(xiàng)式定理把三項(xiàng)式乘冪轉(zhuǎn)化為二項(xiàng)式定理再進(jìn)行計(jì)算,∵x2+3x+2=x2+ (3x+2)=(x2+2)+3x=(x2+3x)+2=(x+1)(x+2)=(1+x)(2+x),∴這條思路下又有四種不同的化歸與轉(zhuǎn)化方法.①如利用x2+3x+2=x2+(3x+2)轉(zhuǎn)化,可以發(fā)現(xiàn)只有(3x+2)5中會(huì)有x項(xiàng),即(3x)·24=240x,故選(B);②如利用x2+3x+2= (x2+2)+3x進(jìn)行轉(zhuǎn)化,則只 (x2+2) 4·3x中含有x一次項(xiàng),即·3x·C44·24=240x;③如利用x2+3x+2=(x2+3x)+2進(jìn)行轉(zhuǎn)化,就只有·(x2+3x)·24中會(huì)有x項(xiàng),即240x;④如選擇x2+3x+2=(1+x)(2+x)進(jìn)行轉(zhuǎn)化,=×展開(kāi)式中的一次項(xiàng)x只能由(1+x)5中的一次項(xiàng)乘以(2+x)5展開(kāi)式中的常數(shù)項(xiàng)加上(2+x)5展開(kāi)式中的一次項(xiàng)乘以(1+x)5展開(kāi)式中的常數(shù)項(xiàng)后得到,即為25+•24•x••15=160x+80x=240x,故選(B). 

評(píng)注:化歸與轉(zhuǎn)化的意識(shí)幫我們把未知轉(zhuǎn)化為已知。

例4.若不等式對(duì)一切均成立,試求實(shí)數(shù)的取值范圍。

解:   

,則要使它對(duì)均有,只要有

    

點(diǎn)評(píng):在有幾個(gè)變量的問(wèn)題中,常常有一個(gè)變?cè)幱谥饕匚唬覀兎Q之為主元,由于思維定勢(shì)的影響,在解決這類問(wèn)題時(shí),我們總是緊緊抓住主元不放,這在很多情況下是正確的。但在某些特定條件下,此路往往不通,這時(shí)若能變更主元,轉(zhuǎn)移變?cè)趩?wèn)題中的地位,就能使問(wèn)題迎刃而解。本題中,若視x為主元來(lái)處理,既繁且易出錯(cuò),實(shí)行主元的轉(zhuǎn)化,使問(wèn)題變成關(guān)于p的一次不等式,使問(wèn)題實(shí)現(xiàn)了從高維向低維轉(zhuǎn)化,解題簡(jiǎn)單易行。

試題詳情

4.化歸與轉(zhuǎn)化應(yīng)遵循的基本原則:

(1)熟悉化原則:將陌生的問(wèn)題轉(zhuǎn)化為熟悉的問(wèn)題,以利于我們運(yùn)用熟知的知識(shí)、經(jīng)驗(yàn)和問(wèn)題來(lái)解決。

(2)簡(jiǎn)單化原則:將復(fù)雜的問(wèn)題化歸為簡(jiǎn)單問(wèn)題,通過(guò)對(duì)簡(jiǎn)單問(wèn)題的解決,達(dá)到解決復(fù)雜問(wèn)題的目的,或獲得某種解題的啟示和依據(jù)。

(3)和諧化原則:化歸問(wèn)題的條件或結(jié)論,使其表現(xiàn)形式更符合數(shù)與形內(nèi)部所表示的和諧的形式,或者轉(zhuǎn)化命題,使其推演有利于運(yùn)用某種數(shù)學(xué)方法或其方法符合人們的思維規(guī)律。

(4)直觀化原則:將比較抽象的問(wèn)題轉(zhuǎn)化為比較直觀的問(wèn)題來(lái)解決。

(5)正難則反原則:當(dāng)問(wèn)題正面討論遇到困難時(shí),可考慮問(wèn)題的反面,設(shè)法從問(wèn)題的反面去探求,使問(wèn)題獲解。

試題詳情

3.轉(zhuǎn)化有等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化。等價(jià)轉(zhuǎn)化前后是充要條件,所以盡可能使轉(zhuǎn)化具有等價(jià)性;在不得已的情況下,進(jìn)行不等價(jià)轉(zhuǎn)化,應(yīng)附加限制條件,以保持等價(jià)性,或?qū)λ媒Y(jié)論進(jìn)行必要的驗(yàn)證。

試題詳情

2.化歸與轉(zhuǎn)化思想的實(shí)質(zhì)是揭示聯(lián)系,實(shí)現(xiàn)轉(zhuǎn)化。除極簡(jiǎn)單的數(shù)學(xué)問(wèn)題外,每個(gè)數(shù)學(xué)問(wèn)題的解決都是通過(guò)轉(zhuǎn)化為已知的問(wèn)題實(shí)現(xiàn)的。從這個(gè)意義上講,解決數(shù)學(xué)問(wèn)題就是從未知向已知轉(zhuǎn)化的過(guò)程;瘹w與轉(zhuǎn)化的思想是解決數(shù)學(xué)問(wèn)題的根本思想,解題的過(guò)程實(shí)際上就是一步步轉(zhuǎn)化的過(guò)程。數(shù)學(xué)中的轉(zhuǎn)化比比皆是,如未知向已知轉(zhuǎn)化,復(fù)雜問(wèn)題向簡(jiǎn)單問(wèn)題轉(zhuǎn)化,新知識(shí)向舊知識(shí)的轉(zhuǎn)化,命題之間的轉(zhuǎn)化,數(shù)與形的轉(zhuǎn)化,空間向平面的轉(zhuǎn)化,高維向低維轉(zhuǎn)化,多元向一元轉(zhuǎn)化,高次向低次轉(zhuǎn)化,超越式向代數(shù)式的轉(zhuǎn)化,函數(shù)與方程的轉(zhuǎn)化等,都是轉(zhuǎn)化思想的體現(xiàn)。

試題詳情


同步練習(xí)冊(cè)答案