相關習題
 0  204714  204722  204728  204732  204738  204740  204744  204750  204752  204758  204764  204768  204770  204774  204780  204782  204788  204792  204794  204798  204800  204804  204806  204808  204809  204810  204812  204813  204814  204816  204818  204822  204824  204828  204830  204834  204840  204842  204848  204852  204854  204858  204864  204870  204872  204878  204882  204884  204890  204894  204900  204908  266669 

科目: 來源: 題型:

已知等差數(shù)列{an}滿足:a2=5,a4+a6=22,{an}的前n項和為Sn
(1)求an及Sn; 
(2)若f(x)=
1
x2-1
,bn=f(an)(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

設二次函數(shù)f(x)=x2+ax+b.對任意實數(shù)x,都存在y,使得f(y)=f(x)+y,則a的最大值是
 

查看答案和解析>>

科目: 來源: 題型:

如圖1,在平面直角坐標系中,點O為坐標原點,直線y=-x+4與x軸交與點A,過點A的拋物線y=ax2+bx與直線y=-x+4交與另一點B,B的橫坐標為1.
(1)點C為拋物線的頂點,點D為直線AB上一點,點E為該拋物線上一點,且D、E兩點的縱坐標都為1,求△CDE面積.
(2)如圖2,P為直線AB上方的拋物線上一點(點P不與點A、B重合),PM⊥x軸于點M,交線段AB于點F,PN∥AB,交x軸于點N,過點F作FG∥x軸,交PN于點G,設點M的坐標為(m,0),F(xiàn)G的長度為d,求d與m之間的函數(shù)關系式及FG長度的最大值,且求出此時P點坐標.

查看答案和解析>>

科目: 來源: 題型:

已知極坐標的極點在平面直角坐標系的原點O處,極軸與x軸的正半軸重合,且長度單位相同.曲線C的方程是ρ=2
2
sin(θ-
π
4
),直線l的參數(shù)方程為
x=1+tcosα
y=2+tsinα
(t為參數(shù),0≤a<π),設P(1,2),直線l與曲線C交于A,B兩點.
(1)當a=0時,求|AB|的長度;    
(2)求|PA|2+|PB|2的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=
1
x-1
,x∈[2,6].
(1)證明:f(x)是定義域上的減函數(shù);
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)滿足:①對任意x,y∈(-1,1),都有f(x)+f(y)=f(
x+y
1+xy
)
;②f(x)在(-1,1)上是單調遞增函數(shù),f(
1
2
)=1

(1)求f(0)的值;   
(2)證明f(x)為奇函數(shù);  
(3)解不等式f(2x-1)<2.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=ax-
1
a
(a>0,a≠1)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目: 來源: 題型:

已知不等式x2-4x+3<0的解集是A.
(1)設函數(shù)f(x)=log2(a-x)(a∈R)的定義域為集合B,若A⊆B,求a的取值范圍; 
(2)設不等式ax2-2x-2a>0(a∈R且a≠0)的解集為C,若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺蒸汽輪機為動力,為保證航母的動力安全性,科學家對蒸汽輪機進行了技術改進,并增加了某項新技術,該項新技術要進入試用階段前必須對其中的三項不同指標甲、乙、丙進行量化檢測.假設該項新技術的指標甲、乙、丙獨立通過檢測合格的概率分別為
3
4
、
2
3
1
2
,指標甲、乙、丙合格分別記為4分、2分、4分,某項指標不合格記為0分,各項指標檢測結果互不影響.
(1)求該項技術量化得分不低于8分的概率;
(2)記該項新技術的三個指標中被檢測合格的指標個數(shù)為隨機變量X,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

某次國際象棋比賽規(guī)定,勝一局得3分,平一局得1分,負一局得0分,某參賽隊員比賽一局勝的概率為a,平局的概率為b,負的概率為c(a、b、c∈[0,1)),已知他比賽一局得分的數(shù)學期望為1,則ab的最大值為( 。
A、
1
3
B、
1
2
C、
1
12
D、
1
6

查看答案和解析>>

同步練習冊答案