相關(guān)習(xí)題
 0  233702  233710  233716  233720  233726  233728  233732  233738  233740  233746  233752  233756  233758  233762  233768  233770  233776  233780  233782  233786  233788  233792  233794  233796  233797  233798  233800  233801  233802  233804  233806  233810  233812  233816  233818  233822  233828  233830  233836  233840  233842  233846  233852  233858  233860  233866  233870  233872  233878  233882  233888  233896  266669 

科目: 來源: 題型:解答題

16.在公差不為零的等差數(shù)列{an}中,已知a2=3,且a1、a3、a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,記bn=$\frac{9}{{2{S_{3n}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知平面α截一球面得圓M,過圓M的圓心的平面β與平面α所成二面角的大小為60°,平面β截該球面得圓N,若該球的表面積為64π,圓M的面積為4π,則圓N的半徑為$\sqrt{13}$.

查看答案和解析>>

科目: 來源: 題型:填空題

14.某中學(xué)舉行升旗儀式,在坡度為15°的看臺E點(diǎn)和看臺的坡腳A點(diǎn),分別測得旗桿頂部的仰角分別為30°和60°,量的看臺坡腳A點(diǎn)到E點(diǎn)在水平線上的射影B點(diǎn)的距離為10cm,則旗桿的高CD的長是$10({3-\sqrt{3}})$m.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知定義域?yàn)镽的偶函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),對任意x∈[0,+∞),均滿足:xf'(x)>-2f(x).若g(x)=x2f(x),則不等式g(2x)<g(1-x)的解集是( 。
A.(-∞,-1)B.$({-∞,\frac{1}{3}})$C.$({-1,\frac{1}{3}})$D.$({-∞,-1})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.某企業(yè)為節(jié)能減排,用9萬元購進(jìn)一臺新設(shè)備用于生產(chǎn),第一年需運(yùn)營費(fèi)用2萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加3萬元,該設(shè)備每年生產(chǎn)的收入均為21萬元,設(shè)該設(shè)備使用了n(n∈N*)年后,盈利總額達(dá)到最大值(盈利額等于收入減去成本),則n等于(  )
A.6B.7C.8D.7或8

查看答案和解析>>

科目: 來源: 題型:選擇題

11.下列四個(gè)函數(shù)中,在定義域上不是單調(diào)函數(shù)的是(  )
A.y=-2x+1B.y=$\frac{1}{x}$C.y=lgxD.y=x3

查看答案和解析>>

科目: 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ ( t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸 建立極坐標(biāo)系,圓C的方程為 ρ=2$\sqrt{3}$sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P的直角坐標(biāo)為(1,0),圓C與直線l交于A,B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目: 來源: 題型:填空題

9.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)F.
(Ⅰ)求證:AC•BC=AD•AE;    
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某商店計(jì)劃每天購進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購進(jìn)該商品10件,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得表:
日需求量n89101112
頻數(shù)101015105
①假設(shè)該店在這50天內(nèi)每天購進(jìn)10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進(jìn)10件該商品,記“當(dāng)天的利潤在區(qū)間[400,550]”為事件A,求P(A)的估計(jì)值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知△ABC滿足BC•AC=2$\sqrt{2}$,若C=$\frac{3π}{4}$,$\frac{sinA}{sinB}$=$\frac{1}{2cos(A+B)}$,則AB=$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊答案