科目: 來源: 題型:
【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根據(jù)散點圖判斷: 與哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);
(3)若每冊書定價為10元,則至少應該印刷多少冊才能使銷售利潤不低于78840元?(假設能夠全部售出,結(jié)果精確到1)
(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, )
查看答案和解析>>
科目: 來源: 題型:
【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時,輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時的航速沿正東方向勻速行駛,假設輪船A沿直線方向以v海里/時的航速勻速行駛,經(jīng)過t小時與輪船B相遇,
(1)若使相遇時輪船A航距最短,則輪船A的航行速度的大小應為多少?
(2)假設輪船B的航行速度為30海里/時,輪船A的最高航速只能達到30海里/時,則輪船A以多大速度及沿什么航行方向行駛才能在最短時間內(nèi)與輪船B相遇,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】空中有一氣球,在它的正西方A點測得它的仰角為45°,同時在它南偏東60°的B點,測得它的仰角為30°,已知A、B兩點間的距離為107米,這兩個觀測點均離地1米,則測量時氣球離地的距離是_____米.
查看答案和解析>>
科目: 來源: 題型:
【題目】設是橢圓 的四個頂點,菱形的面積與其內(nèi)切圓面積分別為, .橢圓的內(nèi)接的重心(三條中線的交點)為坐標原點.
(1)求橢圓的方程;
(2) 的面積是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2-(2m+1)x+m.
(1)若方程f(x)=0有兩個不等的實根x1,x2,且-1<x1<0<x2<1,求m的取值范圍;
(2)若對任意的x∈[1,2],≤2恒成立,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】請解決下列問題:
(1)設直棱柱的高為,底面多邊形的周長為,寫出直棱柱的側(cè)面積計算公式;
(2)設正棱錐的底面周長為,斜高為,寫出正棱錐的側(cè)面積計算公式;
(3)設正棱臺的下底面周長為,上底面周長為,斜高為,寫出正棱臺的側(cè)面積計算公式;
(4)寫出上述個側(cè)面積計算公式之間的關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】正六棱錐被過棱錐高的中點且平行于底的平面所截,得到正六棱臺和較小的棱錐.
(1)求大棱錐、小棱錐、棱臺的側(cè)面積之比;
(2)若大棱錐的側(cè)棱長為,小棱錐的底面邊長為,求截得的棱臺的側(cè)面積與全面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】大豆,古稱菽,原產(chǎn)中國,在中國已有五千年栽培歷史,皖北多平原地帶,黃河故道土地肥沃,適宜種植大豆,2018年春,為響應中國大豆參與世界貿(mào)易的競爭,某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作,其中一項基礎工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關(guān)系,為此科研人員分別記錄了5天中每天100粒大豆的發(fā)芽數(shù),得如下數(shù)據(jù)表格:
科研人員確定研究方案是:從5組數(shù)據(jù)中選3組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對剩下的2組數(shù)據(jù)進行檢驗.
(Ⅰ)求剩下的2組數(shù)據(jù)恰是不相鄰的2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是4月5日、6日、7日三天數(shù)據(jù),據(jù)此求關(guān)于的線性同歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差絕對值均不超過1粒,則認為得到的線性回歸方程是可靠的,請檢驗(Ⅱ)中同歸方程是否可靠?
注:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為調(diào)查中國及美國的高中生在“家”、“朋友聚集的地方”、“個人空間”這三個場所中感到最幸福的場所是哪個,從中國某城市的高中生中隨機抽取了55人,從美國某城市高中生中隨機抽取了45人進行答題。中國高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個人空間”的高中生的人數(shù)占,美國高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個人空間”的高中生的人數(shù)占。
(1)請根據(jù)以上調(diào)查結(jié)果將下面的2X2列聯(lián)表補充完整,并判斷能否有95%的把握認為戀家(在家里感到最幸福)與國別有關(guān);
在家里感到最幸福 | 在其他場所感到最幸福 | 總計 | |
中國高中生 | |||
美國高中生 | |||
總計 |
(2)從被調(diào)查的不“戀家”的美國高中生中,用分層抽樣的方法隨機選出4人接受進一步調(diào)查,再從4人中隨機選出2人到中國交流學習,求2人中含有在“個人空間”感到最幸福的高中生的概率。
| 0.050 | 0.025 | 0.010 | 0.001 |
3.841 | 5.024 | 6.635 | 10.8 |
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com