相關(guān)習(xí)題
 0  233466  233474  233480  233484  233490  233492  233496  233502  233504  233510  233516  233520  233522  233526  233532  233534  233540  233544  233546  233550  233552  233556  233558  233560  233561  233562  233564  233565  233566  233568  233570  233574  233576  233580  233582  233586  233592  233594  233600  233604  233606  233610  233616  233622  233624  233630  233634  233636  233642  233646  233652  233660  266669 

科目: 來源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為2的兩個(gè)全等的等腰直角三角形,則該幾何體的外接球的表面積是( 。
A.$\frac{8}{3}$B.4$\sqrt{3}$πC.12πD.$\frac{8\sqrt{3}}{3}$π

查看答案和解析>>

科目: 來源: 題型:選擇題

19.方程x2+y2-2x+m=0表示一個(gè)圓,則x的范圍是( 。
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目: 來源: 題型:選擇題

18.兩個(gè)整數(shù)315和2016的最大公約數(shù)是( 。
A.38B.57C.63D.83

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)點(diǎn)M(2,1,3)是直角坐標(biāo)系O-xyz中一點(diǎn),則點(diǎn)M關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為( 。
A.(2,-1,-3)B.(-2,1,-3)C.(-2,-1,3)D.(-2,-1,-3)

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知θ∈($\frac{π}{2}$,π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,則tan(θ+$\frac{π}{4}$)=-$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個(gè)元素的子集記為A1,A2,A3,…,${A_{C_n^4}}$.
設(shè)A1,A2,A3,…,${A_{C_n^4}}$中所有元素之和為Sn
(1)求S4,S5,S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知a、b∈R,若M=$|\begin{array}{l}{-1}&{a}\\&{3}\end{array}|$所對(duì)應(yīng)的變換T把直線2x-y=3變換成自身,試求實(shí)數(shù)a、b.

查看答案和解析>>

科目: 來源: 題型:解答題

13.對(duì)于兩個(gè)定義域均為D的函數(shù)f(x),g(x),若存在最小正實(shí)數(shù)M,使得對(duì)于任意x∈D,都有|f(x)-g(x)|≤M,則稱M為函數(shù)f(x),g(x)的“差距”,并記作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)設(shè)f(x)=$\sqrt{x}$(x∈[1,e${\;}^{\frac{a}{2}}$]),g(x)=mlnx(x∈[1,e${\;}^{\frac{a}{2}}$]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求滿足條件的最大正整數(shù)a;
②若a=2,且||f(x),g(x)||=2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC=$\frac{2π}{3}$.管理部門欲在該地從M到D修建小路:在$\widehat{MN}$上選一點(diǎn)P(異于M、N兩點(diǎn)),過點(diǎn)P修建與BC平行的小路PQ.
(1)若∠PBC=$\frac{π}{3}$,求PQ的長度;
(2)當(dāng)點(diǎn)P選擇在何處時(shí),才能使得修建的小路$\widehat{MP}$與PQ及QD的總長最?并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),離心率為$\frac{{\sqrt{2}}}{2}$,左準(zhǔn)線方程是x=-2,設(shè)O為原點(diǎn),點(diǎn)A在橢圓C上,點(diǎn)B在直線y=2上,且OA⊥OB.
(1)求橢圓C的方程;
(2)求△AOB面積取得最小值時(shí),線段AB的長度.

查看答案和解析>>

同步練習(xí)冊(cè)答案