科目: 來源: 題型:
【題目】完成下面推理過程:
如圖,∠1+∠2=230°,b∥c,則∠1,∠2,∠3,∠4各是多少度?
解:∵∠1=∠2(__________________),
∠1+∠2=230°,
∴∠1=∠2=___________(填度數(shù)).
∵b∥c,
∴∠4=∠2=_______(填度數(shù))(_______________________________),
∠2+∠3=180°(________________________________),
∴∠3=180°-∠2=____________(填度數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點A(2,4)和點B(n,-2),與軸交于點C.
(1)求m,n的值;
(2)當(dāng)時,請直接寫出的取值范圍;
(3)點B關(guān)于軸的對稱點是B′,連接AB′,CB′,求△AB′C的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】課堂上李老師給出了一道整式求值的題目,李老師把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)寫完后,讓王泓同學(xué)順便給出一組的值,老師自己說答案,當(dāng)王泓說完:“”后,李老師不假思索,立刻就說出答案:“3”。同學(xué)們覺得不可思議,李老師用堅定的口吻說:“這個答案準(zhǔn)確無誤。”聰明的同學(xué)們,你能說出其中的道理嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點D、E分別是等邊三角形ABC的邊BC、AC上的點,連接AD、BE交于點O,且△ABD≌△BCE.
(1)若AB=3,AE=2,則BD= ;
(2)若∠CBE=15°,則∠AOE= ;
(3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動的人數(shù)增加了30人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,且所有參加活動的師生都有座位,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD的邊AD經(jīng)過O點,A、C、D三點都在反比例函數(shù)的圖像上,B點在軸的負(fù)半軸上,延長CD交軸于點E,連接CO.
若C(1,2),D(2,1),則為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在4×4的方格紙中,△ABC的三個頂點都在格點上.
(1)在圖1中,畫出一個與△ABC成中心對稱的格點三角形;
(2)在圖2中,畫出一個與△ABC成軸對稱且與△ABC有公共邊的格點三角形;
(3)在圖3中,畫出△ABC繞著點C按順時針方向旋轉(zhuǎn)90°后的三角形;
(4)在圖4中,畫出所有格點△BCD,使△BCD為等腰直角三角形,且S△BCD=4.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=100°,AB=AC,P為BC邊上任意一點.若點E、F分別在AB、AC上,且∠EPF=40°,求證:△BPE∽△CFP;
(2)如圖2,點P在邊CB的延長線上,點E在邊AB上,點F在邊AC的延長線上,仍有∠EPF=40°,探索PB·PC與BE·CF有怎樣的關(guān)系?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結(jié)論:
①△ADE∽△ACD; ②當(dāng)BD=6時,△ABD與△DCE全等;
③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.
其中正確的結(jié)論是____________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com