相關(guān)習(xí)題
 0  231509  231517  231523  231527  231533  231535  231539  231545  231547  231553  231559  231563  231565  231569  231575  231577  231583  231587  231589  231593  231595  231599  231601  231603  231604  231605  231607  231608  231609  231611  231613  231617  231619  231623  231625  231629  231635  231637  231643  231647  231649  231653  231659  231665  231667  231673  231677  231679  231685  231689  231695  231703  266669 

科目: 來(lái)源: 題型:填空題

4.以下四個(gè)命題:
①設(shè)回歸直線方程$\widehat{y}$=0.2x+12,則 x每增加一個(gè)單位時(shí),$\widehat{y}$平均減少0.2個(gè)單位;
②在極坐標(biāo)系中,圓ρ=cosθ與直線ρcosθ=1相切;
③函數(shù)y=$\frac{1}{x}$在定義域內(nèi)為減函數(shù);
④若y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=$\frac{1}{2}$x+2,則f(1)+f'(1)=3.
其中真命題的序號(hào)為②④.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.已知f(x)=$\left\{\begin{array}{l}{x-1(x>0)}\\{0(x=0)}\\{x+5(x<0)}\end{array}\right.$,則f(f(-2))=2.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)E是DD1的中點(diǎn),點(diǎn)F是BB1的中點(diǎn).求證:EF∥平面ABCD.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.給出下列3個(gè)命題:
①棱臺(tái)的側(cè)棱所在的直線必交于一點(diǎn),圓臺(tái)的母線所在的直線也交于一點(diǎn);
②一個(gè)半圓繞其直徑所在直線旋轉(zhuǎn)一周形成的幾何體為球;
③分別以矩形兩條不等的邊所在直線為旋轉(zhuǎn)軸,將矩形旋轉(zhuǎn),所得到的兩個(gè)圓柱是兩不同的圓柱.
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.下列函數(shù)中,對(duì)于定義域內(nèi)的任意x,f(x+1)=f(x)+1恒成立的為( 。
A.f(x)=x+1B.f(x)=-x2C.f(x)=$\frac{1}{x}$D.y=|x|

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2π+$\frac{4}{3}$B.4π+$\frac{4}{3}$C.4π+4D.2π+4

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.給出的30個(gè)數(shù),1,2,4,7,11,…,其規(guī)律是第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第二個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3…依此類(lèi)推,要求計(jì)算這30個(gè)數(shù)的和,寫(xiě)出程序.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.函數(shù)y=x2+$\frac{3}{x}$(x>0)的最小值是$\frac{3\root{3}{18}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.一橢圓上任一點(diǎn)P與橢圓上兩定點(diǎn)A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{3}{4}$,則橢圓的離心率$\frac{1}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上任一點(diǎn)P與橢圓上兩定點(diǎn)A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{^{2}}{{a}^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案