科目: 來源: 題型:
【題目】如圖1,在長方形紙片ABCD中,E點在邊AD上,F、G分別在邊AB、CD上,分別以EF、EG為折痕進行折疊并壓平,點A、D的對應點分別是點A′和點D′,若ED′平分∠FEG,且在內(nèi)部,如圖2,設∠A′ED'=n°,則∠FE D′的度數(shù)為___________(用含n的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的普及,某手機廠商采用先網(wǎng)絡預定,然后根據(jù)訂單量生產(chǎn)手機的方式銷售,2015年該廠商將推出一款新手機,根據(jù)相關(guān)統(tǒng)計數(shù)據(jù)預測,定價為2200元,日預訂量為20000臺,若定價每減少100元,則日預訂量增加10000臺.
(1)設定價減少x元,預訂量為y臺,寫出y與x的函數(shù)關(guān)系式;
(2)若每臺手機的成本是1200元,求所獲的利潤w(元)與x(元)的函數(shù)關(guān)系式,并說明當定價為多少時所獲利潤最大;
(3)若手機加工廠每天最多加工50000臺,且每批手機會有5%的故障率,通過計算說明每天最多接受的預訂量為多少?按最大量接受預訂時,每臺售價多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】中小學生每天在校體育活動時間不低于1小時”為此,我區(qū)就“你每天在校體育活動時間是多少”的問題隨機調(diào)查了區(qū)內(nèi)300名初中學生根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖部分如圖所示,其中分組情況是:
A組:B組:C組:D組:
請根據(jù)上述信息解答下列問題:
組的人數(shù)是______.
本次調(diào)查數(shù)據(jù)的中位數(shù)落在______組內(nèi);
若我區(qū)有5400名初中學生,請你估計其中達國家規(guī)定體育活動時間的人約有多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:,且、、分別是點A. B. C在數(shù)軸上對應的數(shù).
(1)寫出=___;=___;=___.
(2)若甲、乙、丙三個動點分別從A.B.C三點同時出發(fā)沿數(shù)軸負方向運動,它們的速度分別是1、2、4,(單位/秒),運行秒后,甲、乙、丙三個動點對應的位置分別為:,,,當時,求式子的值.
(3)若甲、乙、丙三個動點分別從A,B,C三點同時出發(fā)沿數(shù)軸正方向運動,它們的速度分別是1,2,4(單位/秒),運動多長時間后,乙與甲、丙等距離?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC中,∠ACB=90°,D是AB的中點,∠EDF=90°
(1)如圖1,若E、F分別在AC、BC邊上,猜想AE2、BF2和EF2之間有何等量關(guān)系,并證明你的猜想;
(2)若E、F分別在CA、BC的延長線上,請在圖2中畫出相應的圖形,并判斷(1)中的結(jié)論是否仍然成立(不作證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)證明:“三角形內(nèi)角和是180°”;
(2)請寫出“直角三角形斜邊上的中線等于斜邊的一半”的逆命題,判斷這一逆命題是真命題還是假命題,如果是真命題給出證明,如果是假命題,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材在探索平方差公式時利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖①,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2 , 也可以表示為4×ab+(a-b)2由此推導出重要的勾股定理:如果直角三角形兩條直角邊長為a,b,斜邊長為c,則a2+b2=c2 .
(1)圖②為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你利用圖②推導勾股定理.
(2)如圖③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,則斜邊AB上的高CD的長為多少?
(3)試構(gòu)造一個圖形,使它的面積能夠解釋(a+b)(a+2b)=a2+3ab+2b2 , 畫在如圖4的網(wǎng)格中,并標出字母a、b所表示的線段.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,M為CD的中點,連接AM、BM,分別取AM、BM的中點P、Q,以P、Q為頂點作第二個矩形PSRQ,使S、R在AB上在矩形PSRQ中,重復以上的步驟繼續(xù)畫圖若,矩形ABCD的周長為則:______;第n個矩形的邊長分別是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線.
(1)求證:拋物線與軸必定有公共點;
(2)若P(,y1),Q(-2,y2)是拋物線上的兩點,且y1y2,求的取值范圍;
(3)設拋物線與x軸交于點、,點A在點B的左側(cè),與y軸負半軸交于點C,且,若點D是直線BC下方拋物線上一點,連接AD交BC于點E,記△ACE的面積為S1,△DCE的面積為S2,求是否有最值?若有,求出該最值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com