相關(guān)習(xí)題
 0  231557  231565  231571  231575  231581  231583  231587  231593  231595  231601  231607  231611  231613  231617  231623  231625  231631  231635  231637  231641  231643  231647  231649  231651  231652  231653  231655  231656  231657  231659  231661  231665  231667  231671  231673  231677  231683  231685  231691  231695  231697  231701  231707  231713  231715  231721  231725  231727  231733  231737  231743  231751  266669 

科目: 來源: 題型:解答題

2.某藝術(shù)學(xué)校要排一張有3個(gè)舞蹈節(jié)目和4個(gè)歌唱節(jié)目的演出節(jié)目單,要求:
(1)任何兩個(gè)舞蹈節(jié)目不相鄰的排法有多少種?
(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知項(xiàng)數(shù)相同的等比數(shù)列{an}和{bn},公比為q1,q2(q1,q2≠1),則下列數(shù)列①{3an};②{$\frac{2}{{a}_{n}}$};③{3${\;}^{{a}_{n}}$};④{2an-3bn};⑤{2an•3bn}中為等比數(shù)列的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

20.在紙箱內(nèi)裝有10個(gè)大小相同的黑球、白球和紅球,已知從箱中任意摸出1個(gè)球,得到黑球的概率是$\frac{2}{5}$,從箱中摸出2個(gè)球,至少得到1個(gè)白球的概率是$\frac{8}{15}$.
(1)求箱中各色球的個(gè)數(shù);
(2)從箱中任意摸出3個(gè)球,記白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知二項(xiàng)式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展開式中所有奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為512,求二項(xiàng)式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展開式的所有有理項(xiàng).

查看答案和解析>>

科目: 來源: 題型:填空題

18.在口袋中有不同編號(hào)的5個(gè)白球和4個(gè)黑球,如果不放回地依次取兩個(gè)球,則在第一次取到白球的條件下,第二次也取得白球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知下列隨機(jī)變量:
①10件產(chǎn)品中有2件次品,從中任選3件,取到次品的件數(shù)X;
②一位射擊手對(duì)目標(biāo)進(jìn)行射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,用X表示該射擊手在一次射擊中的得分;
③劉翔在一次110米跨欄比賽中的成績(jī)X;
④在體育彩票的抽獎(jiǎng)中,一次搖號(hào)產(chǎn)生的號(hào)碼數(shù)X.
其中X是離散型隨機(jī)變量的是(  )
A.①②③B.②③④C.①②④D.③④

查看答案和解析>>

科目: 來源: 題型:選擇題

16.世園會(huì)期間,某班有四名學(xué)生參加了志愿工作.將這四名學(xué)生分配到A,B,C三個(gè)不同的展館服務(wù),每個(gè)展館至少分配一人.則四人中學(xué)生甲不到A館的概率為( 。
A.1B.$\frac{5}{6}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設(shè)${({5x-\frac{1}{{\sqrt{x}}}})^n}$的展開式的二項(xiàng)式系數(shù)和為64,則展開式中常數(shù)項(xiàng)為( 。
A.375B.-375C.15D.-15

查看答案和解析>>

科目: 來源: 題型:選擇題

14.某中學(xué)從4名男生和3名女生中推薦3人參加社會(huì)公益活動(dòng),若選出的3人中既有男生又有女生,則不同的選法共有( 。
A.90種B.60種C.35種D.30種

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=4,an+2an+1=6,則a4=$\frac{7}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案