相關(guān)習(xí)題
 0  227675  227683  227689  227693  227699  227701  227705  227711  227713  227719  227725  227729  227731  227735  227741  227743  227749  227753  227755  227759  227761  227765  227767  227769  227770  227771  227773  227774  227775  227777  227779  227783  227785  227789  227791  227795  227801  227803  227809  227813  227815  227819  227825  227831  227833  227839  227843  227845  227851  227855  227861  227869  266669 

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=2x3-3x2,
(1)求函數(shù)f(x)的極大值和極小值,
(2)求x=2時函數(shù)f(x)=2x3-3x2的切線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,
(1)求證:直線BC1∥平面D1AC;
(2)求直線BC1到平面D1AC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

9.對于函數(shù)y=f(x)的定義域?yàn)镈,如果存在區(qū)間[m,n]⊆D,同時滿足下列條件:
①f(x)在[m,n]上是單調(diào)函數(shù);②當(dāng)f(x)的定義域?yàn)閇m,n]時,值域也是[m,n],則稱區(qū)間[m,n]是函數(shù)f(x)的“Z區(qū)間”.對于函數(shù)f(x)=$\left\{\begin{array}{l}{alnx-x,x>0}\\{\sqrt{-x}-a,x≤0}\end{array}\right.$(a>0).
(Ⅰ) 若a=1,求函數(shù)f(x)在(e,1-e)處的切線方程;
(Ⅱ) 若函數(shù)f(x)存在“Z區(qū)間”,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-3|.
(Ⅰ)若不等式f(x-1)+f(x)<a的解集為空集,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若|a|<1,|b|<3,且a≠0,判斷$\frac{f(ab)}{|a|}$與$f(\frac{a})$的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知線段PQ的端點(diǎn)Q的坐標(biāo)是(4,3),端點(diǎn)P在圓(x+1)2+y2=4上運(yùn)動,則線段PQ的中點(diǎn)M的軌跡方程是(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}}\right.$,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$ρcos(θ+\frac{π}{4})=-\sqrt{2}$,A,B兩點(diǎn)的極坐標(biāo)分別為$A(2,\frac{π}{2}),B(2,π)$.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=|{\frac{1}{2}x+1}|+|{x-1}|(x∈R)$的最小值為a.
(1)求a;
(2)已知兩個正數(shù)m,n滿足m2+n2=a,求$\frac{1}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,直三棱柱ABC-A1B1C1中,D是AB的中點(diǎn).
(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=2$\sqrt{2}$,求異面直線BC1與A1D所成角的大。

查看答案和解析>>

科目: 來源: 題型:填空題

3.不等式|x-3|<5的解集是(-2,8).

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性.
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0在x∈(0,+∞)上恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

同步練習(xí)冊答案